За последние десять лет инвестиции в цифровизацию сельского хозяйства выросли десятикратно, а к 2026 году финансирование отрасли должно увеличиться еще в 5 раз! AgroTech стал такой же реальностью, как FinTech и HRTech! Управление рисками является ключевым инструментом, позволяющим эффективно повышать рентабельность и сокращать затраты — в сельском хозяйстве это возможно с помощью цифровизации.
Сельская хозяйство — наукоемкое направления деятельности человека. Агротех-специалисты работают со сложными биологическими, инженерными системами и устройствами. Сложность делает востребованными множество современных цифровых технологий, таких как:
Подробнее о дронах, роботах и их программировании вы сможете узнать из этой статьи.
Сфера разработки дронов одна из наиболее интенсивно развивающихся. Такое положение вещей вызвано множеством факторов, но ключевым здесь является то, что дроны позволяют существенно снизить операционные затраты. Большие территории и необходимость выполнять множество рутинных технологических операций делают дроны идеальными помощниками.
Происхождение термина «дрон» до сих пор вызывает споры среди лингвистов. Предполагается, что название возникло на рубеже 1934-го 1935 г., когда низко летающими самолеты гудели, не могли резко маневрировать и ускоряться, а также издавали характерная монотонная жужжание, как трутни. Drone с английского как раз переводится как трутень. Длительное время дронами называли только самолёты мишени, но в 1950-ые и особенно в 1960-ые года к дронам как-то само собой причислили все беспилотники, начиная от крылатых ракет и заканчивая не пилотируемыми в то время космическими аппаратами.
Вот так ChatGPT с помощью искусственного интеллекта объясняет, что такое дрон:
Дрон (квадрокоптер) – это беспилотный летательный аппарат с возможностью автоматического или удаленного управления. Они используются для различных назначений, включая фото- и видеосъемки, аэрофотосъемку, аэросканирование, оценку различных местностей, выявление угроз безопасности, полевые исследования и т.д.
Дроны подразделяются на:
По способу применения дроны могут быть:
Летающие дроны подразделяется на три основных подвида:
Летающие дроны могут применяться в сельском хозяйстве для:
Летающие дроны весьма эффективны, но наземные дроны имеют некоторые неоспоримые преимущества перед ними. Наземные дроны могут гораздо дольше выполнять свою работу, к тому же они более экономичны и точны при выполнении некоторых задачах, а также более универсальны и безопасны. Они могут выполнять практически все те же операции, что и летающие, за исключением мониторинга с воздуха и быстрого перемещения на большие расстояния.
Отдельно хочется отметить перспективу дальнейшего развития комбинированных дронов, которые в большей степени являются сложными роботами, нежели дронами.
Робот – это механизм, выполняющие запрограммированные действия. Он воспринимает окружающий мир с помощью сенсоров, датчиков, микрофонов и камер и строит модели своего поведения под определённую задачу, а также может тем или иным образов воздействовать на физический мир.
Дроны и роботы сегодня активно используются в сельском хозяйстве. Задачи у них разные: вносить удобрения, засевать поля, лечить растения ультрафиолетом, мониторить поля, пасти овец. Приведем только некоторые примеры использования умных помощников «в полях»:
В подкасте РСХБ в цифре «Цифровая грядка» основатель и генеральный директор стартапа Agrofly Сергей Терёхин рассказал, выгодно ли сегодня фермеру в России покупать дрон или лучше взять его в аренду. А ещё — как можно применять летающих роботов.
Инженер-конструктор проектирует дроны, занимается их сборкой и тестированием. Программист же разрабатывает программное обеспечение, без которого летательный аппарат не сможет выполнять практические задачи. Индустрия программирования дронов значительно прогрессировала около 10 лет назад, когда в рамках Open Source проекта по созданию Robot Operating System (ROS) были разработаны библиотеки и инструменты, позволяющие компилировать приложения для управления роботами. Создатели проекта в то время о коммерческом использовании ROS даже не задумывались. Сейчас ROS считается ведущей оперативной системой для создания робототехнических приложений. Платформа дает программистам массу возможностей и инструментов, работающие алгоритмы, а также доступ к глобальной экосистеме инженеров и научных специалистов.
Robot Operating System обеспечивает корректное взаимодействие сенсоров, 3D-карт, планировщика безопасного маршрута и SLAM. Программная среда состоит из набора отдельных узлов (node), которые взаимодействуют между собой. Основной узел ROS — «master node». Главная функция этого модуля — регистрация других узлов приложения. Каждый из таких узлов – это процесс Linux. Система ROS обеспечивает механизм синхронизации и передачи сообщений между отдельными узлами. Этими сообщениями могут быть сенсорные данные, облака точек, видеокадры, параметры и команды управления. Узлы могут запускаться на разных машинах и взаимодействовать через сетевой интерфейс.
По мнению самих разработчиков ROS, для программирования устройств не требуются какие-то исключительные навыки, необходимо лишь иметь базовые знания о встроенном программном обеспечении и системах управления. Поэтому тем, у кого уже есть опыт программирования, будет гораздо проще разобраться и приступить к разработке ПО для дронов.
Требования к программисту дронов:
Программисты помогают ориентироваться в пространстве роботам и дронам с помощью маппинга. Автономная навигация робота строится на трёх фундаментальных принципах:
Задача маппинга состоит в том, чтобы ответить роботу на вопрос: «Как выглядит окружающее пространство?» Во время картографирования данные с различных датчиков передаются роботу. На основе обработанных данных строится карта окружающего мира.
Задача локализации состоит в том, чтобы ответить на вопрос робота: «Где я нахожусь?» Во время локализации робот определяет своё положение относительно карты, которая может быть уже ему известна или сформирована в режиме реального времени. При локализации на заранее известной карте робот должен уметь определять своё положение, где бы он ни находился.
Задача планирования пути состоит в том, чтобы ответить на вопрос робота: «Как я могу добраться до целевой точки?» Целевая точка на карте может быть установлена оператором робота или самим роботом. Робот должен уметь самостоятельно прокладывать траекторию движения к целевой точке на карте и добираться до неё. Кроме этого, траектория движения должна быть оптимальна и безопасна.
Полетный контроллер отвечает за полет дрона и вращение его моторов. Примером универсальной платформы является плата Pixhawk, оснащенная процессором ARM, а также прошивкой PX4. Программный код прошивки компилируется в специальном режиме «software in the loop», что позволяет проводить тесты на ПК.
Для симуляции работы дрона и оценки ПО используется программный симулятор реальности Gazebo.
В качестве базовой модели в виртуальной среде выступает виртуальная роботизированная овечка Долли, которая служит практическим введением в Gazebo и ROS2. Долли следует за вами повсюду, неся тяжелые вещи. Тележка оснащена двумя моторизованными колесами, которые позволяют роботу маневрировать и обнаруживать объекты, находящиеся впереди, с помощью лазерного сканера.
Для восприятия окружающей реальности роботы оснащают разнообразными датчиками, работа которых может быть также смоделирована в Gazebo:
Разработчики программного обеспечения для дронов требуются в промышленных отраслях, в сельском хозяйстве, картографии, аэрофотосъемке, беспилотной логистике и других сферах. Востребованность этих профессии будет только расти.
Программисту доступны следующие ниши: